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Measurements of collisional properties of spheres using high-speed video analysis
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In this paper we report measurements of collisional properties of spheres using high-speed video analysis.
These results agree with a simple collision operator. We study the size and velocity dependences of the
coefficient of restitution in the normal direction. The experimental data are compared with the relevant models
of energy dissipation and show the existence of two dissipation regimes. For large impact velocities a plastic
deformation model is in good agreement with our measurements, while for smaller velocities a model of
viscoelastic dissipation gives qualitative agreement.
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[. INTRODUCTION reductive simplifications of real collision processes and do
not always rely on well established experimental knowledge
Bulk solids or granular materials are assemblies of disor sound theoretical results. From a theoretical point of view
crete solid particles. They exhibit very complex and diversehe collision between two inelastic frictional spheres is par-
static or dynamic behaviors. Because bulk solids occupy &cularly difficult due to complicated mechanisms respon-
preponderant situation in human activities and environmentible for energy dissipatiof21,22 and to mechanical cou-
they have motivated, in recent years, significant research epling between normal and tangential deformatip23—25.
forts. Attention has been focused on microstructural levelOn the basis of previous theoretical results due to Landau
studies that in turn should allow for quantitative predictionsand Lifshitz[26] for the compression of elastic spheres and
of large scale flows. Hence, more fascinating phenomengo Mindlin [30] for the tangential loading of elastic frictional
have been intensively studiéd]. spheres, Mawvet al. [24] established a numerical model de-
Computer simulations of granular flows have proved to bescribing the oblique collision of spheres. In this model dissi-
a powerful investigation tool to test and validate theoreticalpation arises due to frictional interaction of the contact sur-
models but also to complement and interpret experimentéces. It is verified experimentally using a flat puck gliding
findings. In the simulations the individual components, mostabove an air table and colliding with a flat surface. Sonder-
of the times idealized as disks or spheres, of the materiajaard and Chane}29] also studied the collision of a disk
interact through binary collisions. Collisions are “solved” with a flat plate. Later the experiment of Foersé¢l. [27]
using prescribed force schemes for soft-sphgnelecular  established this model for small spheres in free flight. How-
dynamic$ [2—8] simulations and collision operators for ever because this model cannot reasonably be incorporated
hard-spheregevent-drivef simulations[9—17]. With mo-  in numerical simulations of large assemblies of spheres or
lecular dynamics one integrates timewise Newton’'s equationisk, Walton[8] introduced a simple collision operator that
for each particle, while event-driven techniques process froncaptures the main features of the oblique collision through
one collision to the next, and obtain the postcollisional parthe definition of three collisional properties as described in
ticle kinematics as a function of precollisional values and ofmore detail in Sec. Il. In such a modelkl hocdefinitions of
the parameters defining the operator. Because binary interathe parameters may be introduced so as to reproduce known
tions govern the transport properties of rapid or agitatednaterial properties. It is a good trade-off between the com-
granular flows through conversion of the macroscopic kinetiglexity of the phenomena evidenced [ip4] and efficiency
energy into fluctuation energy, the specific contact laws areequirements mentioned above. While the frictional effects
fundamental3,7,8,18,19 and constitute a keystone of simu- are relatively well understood, all other dissipation mecha-
lations as well as theories. It is therefore crucial to have aisms are still poorly documented and are often condensed in
knowledge beforehand of the properties of the flow materiah constant coefficient of restitution whose dependence on the
and to be able to mimic the actual rheological behaviors. size or velocities of the colliding bodies is ignored. Experi-
In recent years this issue has been very controversial. Anentally it is known that the coefficient of restitution de-
basic requirement of numerical simulations as well as theoereases with increasing impact velocf82,28,29 but data
ries is that the interaction model used be sufficiently simpleproviding relevant scaling law@®f mass and velocity depen-
to guarantee numerical efficiency or allow for tractable cal-dence is inexisteant or scarce. Kuwabara and Kdr2]
culations. Many collision models have been propoésgk  proposed a model of viscoelastic dissipation and compared it
Ref. [20] and references therginthat all are more or less with experimental results of collisions between two pendula.
This model seemed to properly reproduce the velocity de-
pendence of the coefficient of restitution for low dissipation
*Present address: Laboratoire des MilieuysBrelonns et Heero-  conditions. For higher velocities, when plastic deformation is
genes(Tour 22—case 86 UniversitePierre et Marie Curie, 4 Place likely to occur, Johnsof21] shows, on the basis of an en-
Jussieu, Paris, France. ergy balance between kinetic energy and energy of plastic
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deformation, thae should decrease more sharply as a power
—1/4 of the impact velocity. Both models predict different
size dependences, an issue that still has to be answered ex-
perimentally.

Recently Schier et al.[20] carried out a critical study of Sphere 1
the collision models used in molecular dynamics simula-
tions. From a comparison with the results of Rgf7] they
showed which are the relevant models for standard materials
(metals, hard plasti¢sisually considered and which are un-
able to reproduce the experimental data. The velocity depen-
dence of the coefficient of restitution also displays substan-
tial differences from one model to the next, sometimes
predicting less dissipation for higher impact velocities,
which is unphysical for standard materials.

In summary, the problem encountered by physicists in-
volved in modeling granular media is the poor knowledge of |G, 1. Relative kinematics of two colliding spheres? is the
interaction laws that should at least mimic obviously morejmpyise exerted by sphere 2 on spheré lis the relative velocity
complicated rheological behaviors and allow efficient com-of the spheres at their contact point.
putation. On the other hand, interpretation of physical ex-
periments and validation of computer simulations and theog, and, and the spheres are spinning with rotation vectors
retical models require a quantitative knowledge of theg, and,. During the collision sphere 2 exerts an impulse

properties of the flow materials. In this paper we present an\ g o sphere 1. The new values of velocities and rotation,

experiment whereby the kinematics of spheres colliding ingreatter denoted with a prime, are obtained from the con-
free flight can be determined using high-speed video analyzaryation of linear momentum

sis, in order to provide such quantitative information. We

start t_)y briefly presenting t'he collisional properties as de- AI3=m1(61—171)=—m2(z7§—62), 1)
fined in [8]. We then describe our experimental apparatus

and method. We measure collisional properties of plastigf angular momentum,

spheres according to the collision operator to be defined be-

low. We further investigate the mass and velocity depen- . . 20, 20, ., .

dences of the coefficient of restitution for normal impacts, —NXAP= d_l(wl_wl): d—z(wz—wz), 2
which is one of the three properties entering the collision

operator. Finally these measurements are directly compareghd from prescribed relations using the collisional properties.
with the relevant models of energy dissipation as discusseth Eq. (2) 1i is the unit vector joining the centers of the two
above. spheres, i.e.fi=(F,—r>,)/|F,—F>,|. The relative velocity of
the spheres at their contact point, or sliding velocity, before
collision is (see Fig. 1

dp . dp |
2_(? w1+7w2

AP

Sphere 2

S

Us

II. DEFINITION OF COLLISIONAL PROPERTIES

In this section we present briefly the “collision operator”
introduced by Walton in8]. Subsquently to the work of
Mindlin [30] on the oblique contact of frictional spheres, _ . . R
Maw et al. [23,24 modeled the collision of two elastic ThiS velocity has a normal compones=(v.-M)n and a
spheres by subdividing their contact patches into a series §omponent lying in the tangential plang=v.—v,. The
concentric annuli, each of them being either in sticking or inhormal coefficient of restitution is defined as
sliding motion relative to the same annulus belonging to the def
other sphere. Solving numerically the equations of elasticity (01— 03)-A=—e (01— 0,)-h. 4
with mixed boundary conditions they evidenced the possibil-
ity during a collision of storing and partly retrieving elastic It is a measure of the energy lost in the normal direction of
energy stored as tangential deformation of the spheres in tHbe relative impact motion. The direction @f is assumed to
contact region. These results are captured by a simple collPe unchanged but its modulus is reduced by a fa@pac-
sion operator due to Waltof8]: the collision is considered cording to
as an instantaneous event and three collisional properties are def
defined relating the precollision and post collision kinemat- Ui=—PpBUs. (5)
ics. These properties are phenomenological constants de-
scribing the inelastic and frictional nature of the interactionsSimilarly to e, 8 is the coefficient of restitution of the tan-
but also the coupling between translational and rotationagential or rotational motion. As shown by Maat al.[23], 3
relative motion of the colliding spheres. Let us consider twojs a function of the angle of incidenge with possible values
homogeneous spheres with massgsandm,, diametersl;  lying in the rangd —1:1]. The angley is illustrated in Fig. 1:
and d,, moments of inertia about their centér and I, it is such that coty=v,/vs. With the above definition of Eq.
(1;=m;d?/10) and colliding when their centers lie@&tand  (4) it is straightforward to show, using the conservation of
f». Prior to the collision the sphere centers have velocitiedinear momentum given by Ed1), that the normal com-
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FIG. 2. Variation of the rotational coefficient of restitutigh Lo :
with v, /v as predicted by Ed7).

R R FIG. 3. Experimental setup.
ponent of AP is AP ,=—(1+€)Me@n [Meg=Mmim,/
(my+m,) is the reduced mass of the two spherds order  equal toB, but the impulse ratio is now varying. Although it
to determine the tangential component of momentunis not knowna priori whether a particular collision will be
change, Walton assumes that a given collision is eislidr  rolling or sliding, it is still possible, according to Walton's
ing or rolling throughout the contact. In the first ca@#id-  model, to determingw, and 8, by producing a plot of3
ing), the tangential componemP, is set equal to its fric- values versus-v, /v values: According to Eq7) B, is the
tional limit according to Coulomb’s law: its magnitufigP,| ~ Maximum value taken by while the slope of the sliding
is a coefficient of frictionu, times the magnitude of the €gime isug(1+1/K)(1+e).

normal componentAP,| and it is parallel, but oriented in
the opposite direction, to the tangential component of the 1. EXPERIMENTAL METHODS

contact velocity, i.e., . - .
Experimental measurements of collision properties of

spheres depend entirely on the ability to determine as accu-
rately as possible the kinematics of the two colliding bodies

before and after collision. Previous experiments were de-
signed in which either the available velocity range was very

narrow[27] or the geometry of the collisiof22,28,, i.e., the

than 1[8] and thus a net increase of energy. This is why2ngl€ of relative approach, was maintained at zero. Our aim
whenever for a given collision the sliding assumption yields's to increase flexibility for both parameters. The experimen-

a B value greater tharB,, an a priori unknown positive tal setup we us:a ('js. SEOW;‘ ':1 Fig. l3tan(];j tls essc_antlal]t)/ .the
constant smaller than Iolling is effective. This condition same as presented in RE37]. It consists of two main units:

defines a critical angle of incidencg above which Eq(6) the “collision “T‘“" s d_esigned to _produ_ce coIIisions_ O.f two

is no longer valid. In this case, and in the absence of ad§pheres of arbitrary diameters with adjustable collision ge-
equate theoretical predictiong,is set equal to this limiting ometry: two steel tgbes are mounted on micropositioning
value B,. Along with e and uo, B, becomes the third un- slides; one of them is allowed to move horizontally and the
known collision property we Wish to determine from our other vertically, thus allowing for changes of the relative

experiment. It characterizes the restitution, in the tangentia'tf“k:)'denc(;a ﬁf Itg'e :V\,:ﬁ sphzresf. t(r?nel st?helr)e IS ms%rted n ez;ch
motion, of collisions during which rolling in the sense given ube and neld at the end of he 1atter by a void pump.

in [24] occurs. The equations relating the precollisional andm?lr)ualtrt]rlgtger relrclaases ,tbt]f? pressurized a}w Su‘t)r?lyi tgustﬁx-
postcollisional kinematics of the spheres boil dowr] &g4] pelling the two spheres. Alter émergence from the tubes tne
spheres follow a ballistic trajectory before and after collision.

The initial motion takes place in the vertical plane containing

AP=— uol AP, (6)

with =v/|vg. uo characterizes the frictional properties of
the surfaces. For angles of incidence closera.e., nearly
head-on collisions, Eq6) would yield values ofg larger

1 v - . g
—1—puo 1+R (1+e)— for y<y, (sliding) the axes of the tubes. The “recording unit” is a Ektapro
B= Us 1000 High-Speed Video System consisting of the camera
Bo for y=y, (rolling), itself whose focal plane is parallel to the above precollisional

(7 plane, an image processing unit, a video monitor, and a im-

) age intensifying unit. The collision scene is lightened from
where K=4I/md is a constant equal to 2/5 for homoge- the front with two 750 W Lowell DP lights positionned sym-
neous spheres. Figure 2 illustrates the variationBakith  metrically on both sides of the camera. Collisions are re-
—vn/vs given by Eq.(7). The analysis of a single collision ¢orded on a video tape at a rate of 1000 images per second.
yields the coefficient of normal restitutien and only one of A varying number of the resulting gray level images, de-
the two other parameterS, and u,. Indeed for asliding  pending on the velocities and sizes of the spheres, are saved
contact,B is a function of the angle of approach whilg is  and downloaded on a Unix platform for processing. In order
now given by the ratio of the tangential to the normal com-to keep the processing time within reasonable limits, this
ponent, usually referred to as the impulse ratio, of the immumber is usually of the order of 8 to 12 imagesit maybe
pulse AP. On the other hand, wherolling prevails 8 is  as low as 2 for high velociti¢svith approximately as many
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falling spheres are determined by following the motion,
about the sphere centers, of black dots imprinted on their
surfaces as shown in Fig. 2. The detection of these markers
in the gray level image is performed through a clustering
algorithm capable of fitting ellipseg35]. Once the corre-
spondence between markers from one image to the next is
known, the position of the markers is shifted to a reference
frame connected to the center of the sphere so that only the
rotational motion of the markers subsists. The rotation vector
from one frame to the next may then be determined by a
least squares method as shown in preliminary studies
[36,37. We assume that this rotation does not vary signifi-
cantly during the recording so that an average rotation vector
is computed before and after collision for each sphere. After
collision, the velocity components of the spheres perpendicu-
lar to the focal plane are then determined from conservation
of angular momentum. The ability of this experiment to pro-
vide results accurate enough is limited by the resolution of
the camera, which is of 192 by 239 pixels. This is why
before extracting the features of the images, i.e., the sphere
and marker boundaries,saibpixelexpansior 33] of the im-

age is performed, which is part of the above mentioned
“edge detection technique.” This amounts to inserting inter-
polation points of the intensity of the gray level images,
therefore refining the apparent resolution of the camera. The
final images have dimensions 4 times larger than the camera
resolution, i.e., 768 by 960. Figure 5 shows a gray level
image and the detected edge points in the subpixel expansion
of this image. The sphere and marker centers are denoted by
stars. We verify that this expansion technique actually im-
proves the accuracy. Assuming that the accuracy of the po-
sition of a sphere center is sfsubpixel units, we may esti-
mate the error made on the measurement of the component
of relative velocityv in a given direction¢ as

sd

nsét\/ﬁ’

(a) (b)

where 6t is the average time between two consecutive
FIG. 4. Sequence of images. Time increases from top o botto frames,ng is the number of subpixels per diameter, and the

- . Sequence of Images. fime | P Mactor VN (N is the average number of frames before or after
(a) before collision;(b) after collision.

collision) is included in a statistical sense to account for the

images before as after collision. Figure 4 shows a Sequem%ecrease O_f the stagdarc:c ?Iewatlon of dofur me;j[ls:JremenFs W'tfh
of such images. In this particular example images from Fig, € Increasing number of frames used for a Tit. in a Series o

4(a) are taken before collision and those from Figh)dafter test coIhsO:orr:eexp?rlmerr]]ts (\ij']Eh 254 mm n;lllon spheres, \;ve
collision. The collision takes place within the time interval measured théu . from the difierence in total momentum o

occurring between the snapshots shown at the bottom of Fi .he two spheres, before and after the collision in both direc-

4(a) and the top of Fig. @). Edge detection and clustering "'O"S- If vy, and Uag A€ the velocny components of two
techniqueg31—34 have been implemented to determine thec0!liding spheres in either the or y direction before colli-
trajectory of the spheres. Once the positions of the centers Gf°N With @ prime after collision, we computelv, as

the spheres have been determined, we perform a second dbv¢=|3(vi;Tvs:—v1—v2g)|. Using Eq.(8) wheres is
gree polynomial fit of their respective trajectories, before ancdhow considered as a parameter, we firell +=0.5. We con-
after the collision independantly. These fits are used to findervatively conclude that the subpixel expansion technique
the “collision time,” i.e., the time when the two trajectories guarantees an effective accuracy of 2 subpixels or half a
intersect. The velocity components of each sphere before quixel of the initial image. In the conditions of the test experi-
after the collision are then computed by differentiating thements, this corresponds to about a 4% uncertainty for mea-
best fits at the “collision time.” The individual spins of the surements of velocities of the order of 1 m's
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FIG. 6. Coefficient of tangential restitutighivs the cotangent of
200 the angle of incidence.
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pixel units is found to be over all these collisioms=0.97+0.07. From
the slope of the linear part we can extracg=0.175+0.1.
Due to the discrete nature of the video images, the relative
0 error obtained on e increases with decreasing velocity: in fact
for v,=1 ms ! we measure@=0.97+0.03. The overall un-
100} - certainty found ore may therefore be interpreted as the sig-
nature of the velocity dependence of the coefficient of resti-
) 200 tution, consistently with other measurements presented
'c : : below. Interestingly, we also note that the only two other
% 00} i g0 measurements o, we found in the literaturd27] were
x 2 very close to the value just obtained: 0.43 for soda lime glass
£ 100 spheres and 0.44 for cellulose acetate spheres. We observe,
@ : in spite of the increasing uncertainty for large values of
500} .- & —v,lvg, a tendency ofB to decrease from its maximum
value B, as predicted by Mavet al. [23,24].
6001 - In another series of experiments we now investigate the
mass and velocity dependences of the coefficient of restitu-
700k tion e. In this case the tubes are kept at the same height so
that at high velocities the angle of incideng®f the spheres

0 100 200 300 400 500 600 700
subpixel units

will be close tor. The pressure is varied to obtain different
impact velocity magnitudes. The experiment is performed on
nylon spheres with diameters 25.4, 12.7, and 6.35 mm. Re-
sults are shown in Fig. 7. Some error bars are shown that are

FIG. 5. Gray level imagdtop) and correspondingdgeimage
obtained after processing. The circles are edge points and the stars
are the centers of the detected clustephere or marker boundary
Graduations indicate pixel units in the top image and subpixel units
in the bottom image.

IV. RESULTS AND DISCUSSION

.. . €o
In order to extract collisional properties at moderate ve-

locities (2 m s1), we perform a series of experiments with
2.54 cm nylon spheres with a constant release pressure so
that the velocity of the spheres at emergence from the tubes
is approximately constant. The direction of approach of the
spheres is varied by moving the tubes on their respective
slides. Figure 6 shows the coefficient of tangential restitution
B versus the cotangent of the angle of incidence,,/vs.

0.9

0.71

6.35 mm (data)
12.7 mm (data)
® 254 mm (data)
--- 6.35mm (VM)

>

---~12.7 mm (VM)
-~ 254 mm (VM)
—(PM)

10
V’, (m/s)

On this plot we observe the qualitative behavior predicted by F|G. 7. Coefficient of restitution vs normal impact velocity for

Walton’s model: for low values of-v,/vs, Bfirstincreases nylon spheres for different diameters on a log-log scale. The diam-
linearly until it reaches a maximum positive value eter of the spheres is shown in the figure. VM denotes the viscoelas-
Bo=0.520.1. The average coefficient of normal restitution tic model. PM denotes plastic model.
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estimated from the change of total momentum as explainedarameter. Equatior(§) and(10) were shown in Ref.38] to
earlier, according to yield, in the low dissipation limit, a coefficient of restitution
e obeying approximately
Ae Av,

_ 7?5
€ Un l-ex E-TR SRVilIS’ (12)

It can be observed that the general trend is a decrease of the

coefficient of restitution from values close to 1 as the velocwhereV; is the impact velocityR=d/2 the sphere radius.
ity increases. On the other hand, although the results appedhe size dependence in this model is therefore very strong.
quite scattered, there is an aggregation of points according t4/€ solve this equation numerically over the time interval
size, indicating larger values &, i.e., less dissipation, for Wheres>0, i.e., when the spheres are in contact, to compute
larger spheres at fixed velocity. This result is very encouragthe coefficient of restitutioe. » was chosen so as to grossly
ing and allows us to compare with existing theoretical mod-center three curves obtained from Efj0) at a location sat-

els of dissipation during collisions. At relatively low speeds, isfactory to the eye. We used the following valuesYoénd

a few meters per second, as used here, energy dissipatien Y=3.5x10° Nm™2, »=0.3, and »=190kgs*m™*
appears due to either viscoelasticity of the materials or plasthe mass density for nylon ip=1.14x10° kg m 3. The

tic deformation if, in some region close to the contact sur-ines labeled “VM” in Fig. 7 are the results thus obtained
face, the local stress exceeds a typical yield stress or evérom Eq. (10) for the three diameters employed: this com-
fracture. It is very likely that in real collisions both viscoelas- parison tells us that the size dependence- €& 1/R) pre-

tic and plastic behaviors will come into play and that vis-dicted by Eq.(10) appears to be overestimatéal variation
coelastic effects will prevail for small deformations, i.e., according to 1 ex1/RY2 would be more compatible the
small impact velocities. Both behaviors have been modeledate of decrease &f with velocity is, however, qualitatively
theoretically: Kuwabarat al.[22] proposed a model of vis- compatible with our measurements. As mentioned earlier,
coelastic effects based on Hertz's the¢®p|. It was com- Kuwabara and Kono found that their model was adequate for
pared with experimental measurements made through collivelocities close to or smaller than 1 mi's With our appara-
sions of two pendula and showed good agreement fotus probing such a low velocity range becomes somewhat
materials with the highest restitution or for low impact ve- awkward and the discrepancy of our data with the viscoelas-
locities, typically below 1 msh. Johnson[21] proposed a tic model may well be due to the fact that we used velocities
model of plastic dissipation and obtained, in the large velocabove its range of validity.

ity limit, an asymptotic behavior in which the coefficient of ~ For the smallest spheres and velocities larger than about
restitution does not depend on the size of the object an@5 m s'%, the experimental data clearly plummet below the
decreases as the powerl/4 of the velocity at high veloci- VM prediction, possibly indicating the occurrence of a dif-
ties. This prediction as been verified experimentally in theferent dissipation mechanism. In this velocity range we do
case of a sphere impinging a flat pla#8]. We compare our not have any data for the larger sizes. However, this devia-
measurements @ with both predictions. In the viscoelastic tion incites us to compare our data with a model for plastic
model, the forceP acting between two grains is the sum of deformation since we expect that plasticity has to come into
an elastic interaction given by Hertz's thedisee Appendix play. In order to extend Johnson’s prediction to intermediate
A) and of a viscoelastic force describing the internal frictionvalues ofV;, we follow Ning and Thorntor{39]. In their

of the material. The “frictional pressure” is assumed to bemodel, as long as no plastic deformation occurs, the contact
proportional to the rate of displacemefite., spring and force is given by Hertz's theory, i.e.,

dashpot in parallei

1/2
p 1 3 P =E 2(—> .
P= Qndé(g)f + Edz(g—)f ) (9)=Ed d
viscoelastic damping force  Hertzian elastic force If plastic deformation occurs the pressure distribution is
Hertzian across the contact surface, which is a disk of radius
a such that 2°=R¢, with a cutoff at a specified value of
whereE=Y/[3(1-»?)] (Y is modulus of elasticity and  yield stresso, . In other words, when the maximum elastic
Poisson’s ratipand » is a phenomenological constant ren- stress experienced by the spheres during an elastic impact as
dering the internal friction of the material. The time evolu- given by Hertz reaches,, a central plastic disk develops
tion of the interparticle “penetration’s, i.e., the distance of inside the contact patch, where the pressure saturates at the
relative approach of the sphere centers during the collisiogutoff stresso, . In the remaining part of the contact zone,
[6=(F1—F,—2RM)-f], therefore obeys the following dif- the pressure profile is assumed to follow Hertz's theory. The
ferential equation: pressure increases from zero at the boundary of the contact
. patch too, at the boundary of the inner plastic disk. The
Mreg0= P, (10 resulting force-displacement relationship after yield has been
reached becomes linepsee Eq(12) below]. For details on
wherem,¢qis the reduced mass of the two spheres, as in Sec¢he exact signification of, see, for example, Ref21]. We
[I. While the value ofE is imposed by mechanical properties did not take into account any variation of the contact curva-
of the materialY andv), we have no information on what  ture, as was done in Ref39], in this region during the
values should be, it may therefore be considered as a fittinglastic-plastic loading but instead kept it constant equal to
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restitution by comparison between the work done by the re-
P e : pulsive forceP during the loading and unloading phases.
: The work done until the instant of maximal compression is
loading 1 5+
Force (P) W, > mredV, fo Pdsé. (16)
umloading During rebound, the work done by the elastic force is
: : ,
5, & 6 1 P
Y 0 Wrzimredvfzﬁ. (17)

FIG. 8. Force displacement curve for the elastic-plastic model

given by Eqs(12) and(13). From Eqgs.(16) and(17), an exact solution may be found for

i o the coefficient of restitutioe= (W, /W;)2. This expression
the initial curvatu_re.AcaIcuIanon similar to that of Rg39] _yields an asymptotic limit for;>Vy in agreement with
gives the repulsive force between the two spheres duringgnnson’s:

loading:

" Vi - 1/4
) e=1.19 | . (18
Ed 5| & for o<, Vy

Y 12 (12) The solution is plotted on Fig. 7 with the label “PM” and
E) Sy gives a very good agreement for the smallest spheres, show-
ing the existence of a crossover region between viscoelastic
for S.<s<&* and plastic behaviors for velocities around 10Tmh.sWe
y used oy=4.0x 10" N/m? for which the yield velocity is

where 8, (see Appendix Bis the penetration for which the Vy=9ms*. This plastic model defines a “universal
maximum pressure first reaches and 8* is the maximum  curve” with no size dependence. More data for the larger
penetration, corresponding to the end of loading. Unloadingizes are needed, however, to confirm the predicted scaling
is done elastically with a larger contact curvatieso that  of e.

the elastic force comes to zero after an elastic displacement

Ploading( o)=

EWUyR( 6—46,)+Ed

(6* — 8y) smaller thans*, that achieved during loading: V. CONCLUSION
212E An experimental apparatus was designed to perform mea-
P unloadind ) = R [R" (6—6)]%? for 6p<o6<6*. surements of sphere collision properties: these properties

characterize in a quantitative way the impact of two granules
and therefore can be used to check the relevance of a given
»force scheme or collision operator used in computer simula-
tions or theoretical studies for a given material. This kind of
dneasurement is of crucial importance to physicists dealing
with modeling of rapid flows of granular materials. These
properties are extracted by using a collision operator as was
, _ , reviously done if23,27]. In this model the possibility of
Ploading ) = Punloadind 5" ), (14) Eetrievingypart of the elastic energy stored ir? the earBI/y mo-
ments of a collision where sticking is involved, responsible
for the reversal of the relative surface velocity, is measured

. oo . by the coefficient3,, which was found to be very close to
A discontinuity of the curvature thus arises that may be re evious values obtained for other materigag]. With this

garded as a discontinuity of the average curvature betwedl

the loading and unloading phases. The force-displacemer“?lxpe”mem"’II setup we were able to p_ro_wde result.s on the
curve P(3) is shown in Fig. 8. Yield first occurs when the size and mass dependence of the coefficient of restitution for

stress as predicted by Hertz's theory at the center of th he <_:oII|_5|on of spheres in free f"gh_t and to test the relevant
. : C issipation hypotheses. It appears first that there is a range of
contact patch reaches,. This happens if the initial impact

o s - , velocities in which the coefficient of restitution decreases as
velocity is larger than the “yield velocity’Vy given by(see he si f the obiects d In thi d
Appendix B the size of the objects decreases. In this range we compare

our data with a model of viscoelastic dissipati@2] and
4 5\ 12 showed that the size dependence in this model was overesti-
Vy= 1 (W_‘Zy) (159  Mated but that the velocity dependence-(@=V?"? gave a

9y10\ PE good order of magnitude of the rate of decrease with V; .

As the velocity increased we showed that the viscoelastic
The relative approach of the sphere centers is themassumption was no longer valid and that the stronger dissi-
5= 5y:(1/18)772R(<ry/E)2. ForV;<Vy, no dissipation oc- pation regime(smaller e) was very well described by a
curs, i.e.,e=1. ForV;=Vy, we compute the coefficient of model of plastic deformation inspired frof21,39. Unfor-

13

Both the new curvature and the “permanent indentation,
&g, stem directly from the continuity of the maximum force
P* and of the radius of the contact area at the end of th
loading phase, i.e.,

R’ (6* — 8y)=R&* =2a*2.
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tunately we could not check the size independence predicted Ré=a2.
by this model due to limitations of the experimental setup.

Finally our results show that both models bear some relThe forceP is
evance to the dissipation processes involved according to the

velocity range used and that the yield velocity given by a 4 .
the plastic model is a good indicator of the crossover be- P=f 2mro(r)dr= =a®=4ER?| =
tween the two dissipation regimes. The observed discrepancy 0 R
of our data compared with the viscoelastic model may be due

to the fact that the velocity range we can probe is above th¥/'here
range of validity of the mode(in which a linear relationship

32
. (A2)

is assumed between “frictional pressure” and rate of dis- 1 3(1-v)) N 3(1-v))
placement for this material. This experimental device E Y, Y,
proved to be a suitable apparatus to give quantitative infor-
mation concerning the collision of inelastic frictional spheresg,g
in relevance to the physics of granular media.
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APPENDIX B: COMPLEMENTS ON SOME RESULTS
OF SECTION IV

APPENDIX A: COMPRESSION OF TWO ELASTIC .0 312
P=Ed 3l - (B1)

SPHERES (HERTZ)

We briefly recall results established by Hertz in 1§96e,
for example[21] or [26]), which predict the deformation o
two elastic spheres pressed together by a fdfeePi,
where U, is a unit vector parallel to the line joining their
centers. The results where established for spheres of arbitrary w2
radii R; andR,, Young’s moduliY; andY,, and Poisson’s 5V:E
ratios v, and v,. The two spheres are in contact across a
circular surface of radiua(P). From symmetry arguments,
the only nonzero stress component is that parallel to the di-
rection of the applied force:

f Plastic deformation first occurs when (r =0)= o . Using
Egs. (B1) and (Al), this gives a relationship between the
penetrations, at initial yield andoy :

2
Ty
E) R. (B2)

The yield velocity is obtained from a balance between the
‘initial kinetic energy and the work done by the elastic force
during loading up to the onset of yield:

3P
T Ar)= 3 (a2-r?9)*? (A1) 1 2 dy
27 5 M= f Pds. (B3)
0

wherer is the radial coordinate measured from the center of
the contact surface. The radius of the contact area is relatdgiquations(B3) and (B2) and the first of Eqs(12) are com-

to the distance of relative approaétthrough bined to find the yield velocity in Eq15).
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