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Measurements of collisional properties of spheres using high-speed video analysis

Laurent Labous,* Anthony D. Rosato, and Rajesh N. Dave
Particle Technology Center, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102

~Received 30 May 1997!

In this paper we report measurements of collisional properties of spheres using high-speed video analysis.
These results agree with a simple collision operator. We study the size and velocity dependences of the
coefficient of restitution in the normal direction. The experimental data are compared with the relevant models
of energy dissipation and show the existence of two dissipation regimes. For large impact velocities a plastic
deformation model is in good agreement with our measurements, while for smaller velocities a model of
viscoelastic dissipation gives qualitative agreement.
@S1063-651X~97!01011-8#

PACS number~s!: 82.20.Wt, 46.10.1z, 62.20.Fe, 83.70.Fn
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I. INTRODUCTION

Bulk solids or granular materials are assemblies of d
crete solid particles. They exhibit very complex and dive
static or dynamic behaviors. Because bulk solids occup
preponderant situation in human activities and environm
they have motivated, in recent years, significant research
forts. Attention has been focused on microstructural le
studies that in turn should allow for quantitative predictio
of large scale flows. Hence, more fascinating phenom
have been intensively studied@1#.

Computer simulations of granular flows have proved to
a powerful investigation tool to test and validate theoreti
models but also to complement and interpret experime
findings. In the simulations the individual components, m
of the times idealized as disks or spheres, of the mate
interact through binary collisions. Collisions are ‘‘solved
using prescribed force schemes for soft-sphere~molecular
dynamics! @2–8# simulations and collision operators fo
hard-spheres~event-driven! simulations @9–17#. With mo-
lecular dynamics one integrates timewise Newton’s equa
for each particle, while event-driven techniques process fr
one collision to the next, and obtain the postcollisional p
ticle kinematics as a function of precollisional values and
the parameters defining the operator. Because binary inte
tions govern the transport properties of rapid or agita
granular flows through conversion of the macroscopic kine
energy into fluctuation energy, the specific contact laws
fundamental@3,7,8,18,19# and constitute a keystone of simu
lations as well as theories. It is therefore crucial to hav
knowledge beforehand of the properties of the flow mate
and to be able to mimic the actual rheological behaviors

In recent years this issue has been very controversia
basic requirement of numerical simulations as well as th
ries is that the interaction model used be sufficiently sim
to guarantee numerical efficiency or allow for tractable c
culations. Many collision models have been proposed~see
Ref. @20# and references therein! that all are more or less

*Present address: Laboratoire des Milieux De´sordonne´s et Hétéro-
gènes~Tour 22–case 86!, UniversitéPierre et Marie Curie, 4 Place
Jussieu, Paris, France.
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reductive simplifications of real collision processes and
not always rely on well established experimental knowled
or sound theoretical results. From a theoretical point of vi
the collision between two inelastic frictional spheres is p
ticularly difficult due to complicated mechanisms respo
sible for energy dissipation@21,22# and to mechanical cou
pling between normal and tangential deformations@23–25#.
On the basis of previous theoretical results due to Lan
and Lifshitz @26# for the compression of elastic spheres a
to Mindlin @30# for the tangential loading of elastic frictiona
spheres, Mawet al. @24# established a numerical model d
scribing the oblique collision of spheres. In this model dis
pation arises due to frictional interaction of the contact s
faces. It is verified experimentally using a flat puck glidin
above an air table and colliding with a flat surface. Sond
gaard and Chaney@29# also studied the collision of a dis
with a flat plate. Later the experiment of Foersteret al. @27#
established this model for small spheres in free flight. Ho
ever because this model cannot reasonably be incorpor
in numerical simulations of large assemblies of spheres
disk, Walton@8# introduced a simple collision operator th
captures the main features of the oblique collision throu
the definition of three collisional properties as described
more detail in Sec. II. In such a model,ad hocdefinitions of
the parameters may be introduced so as to reproduce kn
material properties. It is a good trade-off between the co
plexity of the phenomena evidenced in@24# and efficiency
requirements mentioned above. While the frictional effe
are relatively well understood, all other dissipation mech
nisms are still poorly documented and are often condense
a constant coefficient of restitution whose dependence on
size or velocities of the colliding bodies is ignored. Expe
mentally it is known that the coefficient of restitution d
creases with increasing impact velocity@22,28,29# but data
providing relevant scaling laws~of mass and velocity depen
dence! is inexisteant or scarce. Kuwabara and Kono@22#
proposed a model of viscoelastic dissipation and compare
with experimental results of collisions between two pendu
This model seemed to properly reproduce the velocity
pendence of the coefficient of restitution for low dissipati
conditions. For higher velocities, when plastic deformation
likely to occur, Johnson@21# shows, on the basis of an en
ergy balance between kinetic energy and energy of pla
5717 © 1997 The American Physical Society
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5718 56LABOUS, ROSATO, AND DAVE
deformation, thate should decrease more sharply as a pow
21/4 of the impact velocity. Both models predict differe
size dependences, an issue that still has to be answere
perimentally.

Recently Scha¨fer et al. @20# carried out a critical study o
the collision models used in molecular dynamics simu
tions. From a comparison with the results of Ref.@27# they
showed which are the relevant models for standard mate
~metals, hard plastics! usually considered and which are u
able to reproduce the experimental data. The velocity dep
dence of the coefficient of restitution also displays subst
tial differences from one model to the next, sometim
predicting less dissipation for higher impact velocitie
which is unphysical for standard materials.

In summary, the problem encountered by physicists
volved in modeling granular media is the poor knowledge
interaction laws that should at least mimic obviously mo
complicated rheological behaviors and allow efficient co
putation. On the other hand, interpretation of physical
periments and validation of computer simulations and th
retical models require a quantitative knowledge of t
properties of the flow materials. In this paper we present
experiment whereby the kinematics of spheres colliding
free flight can be determined using high-speed video an
sis, in order to provide such quantitative information. W
start by briefly presenting the collisional properties as
fined in @8#. We then describe our experimental appara
and method. We measure collisional properties of pla
spheres according to the collision operator to be defined
low. We further investigate the mass and velocity dep
dences of the coefficient of restitution for normal impac
which is one of the three properties entering the collis
operator. Finally these measurements are directly comp
with the relevant models of energy dissipation as discus
above.

II. DEFINITION OF COLLISIONAL PROPERTIES

In this section we present briefly the ‘‘collision operato
introduced by Walton in@8#. Subsquently to the work o
Mindlin @30# on the oblique contact of frictional sphere
Maw et al. @23,24# modeled the collision of two elasti
spheres by subdividing their contact patches into a serie
concentric annuli, each of them being either in sticking or
sliding motion relative to the same annulus belonging to
other sphere. Solving numerically the equations of elasti
with mixed boundary conditions they evidenced the possi
ity during a collision of storing and partly retrieving elast
energy stored as tangential deformation of the spheres in
contact region. These results are captured by a simple c
sion operator due to Walton@8#: the collision is considered
as an instantaneous event and three collisional propertie
defined relating the precollision and post collision kinem
ics. These properties are phenomenological constants
scribing the inelastic and frictional nature of the interactio
but also the coupling between translational and rotatio
relative motion of the colliding spheres. Let us consider t
homogeneous spheres with massesm1 andm2 , diametersd1
and d2 , moments of inertia about their centerI 1 and I 2

(I i5midi
2/10) and colliding when their centers lie atrW1 and

rW2 . Prior to the collision the sphere centers have veloci
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vW 1 andvW 2 and the spheres are spinning with rotation vect
vW 1 andvW 2 . During the collision sphere 2 exerts an impul
DPW on sphere 1. The new values of velocities and rotati
hereafter denoted with a prime, are obtained from the c
servation of linear momentum,

DPW 5m1~vW 182vW 1!52m2~vW 282vW 2!, ~1!

of angular momentum,

2nW 3DPW 5
2I 1

d1
~vW 182vW 1!5

2I 2

d2
~vW 282vW 2!, ~2!

and from prescribed relations using the collisional propert
In Eq. ~2! nW is the unit vector joining the centers of the tw
spheres, i.e.,nW 5(rW12rW2)/urW12rW2u. The relative velocity of
the spheres at their contact point, or sliding velocity, bef
collision is ~see Fig. 1!

vW c5vW 12vW 22S d1

2
vW 11

d2

2
vW 2D3nW . ~3!

This velocity has a normal componentvW n5(vW c•nW )nW and a
component lying in the tangential planevW s5vW c2vW n . The
normal coefficient of restitution is defined as

~vW 182vW 28!•nW 5
def

2e ~vW 12vW 2!•nW . ~4!

It is a measure of the energy lost in the normal direction
the relative impact motion. The direction ofvW s is assumed to
be unchanged but its modulus is reduced by a factorubu ac-
cording to

vW s85
def

2b vW s . ~5!

Similarly to e, b is the coefficient of restitution of the tan
gential or rotational motion. As shown by Mawet al. @23#, b
is a function of the angle of incidenceg, with possible values
lying in the range@21:1#. The angleg is illustrated in Fig. 1:
it is such that cotg5vn /vs. With the above definition of Eq
~4! it is straightforward to show, using the conservation
linear momentum given by Eq.~1!, that the normal com-

FIG. 1. Relative kinematics of two colliding spheres.DPW is the
impulse exerted by sphere 2 on sphere 1;vW c is the relative velocity
of the spheres at their contact point.
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56 5719MEASUREMENTS OF COLLISIONAL PROPERTIES OF . . .
ponent of DPW is DPW n52(11e)mredvW n @mred5m1m2 /
(m11m2) is the reduced mass of the two spheres#. In order
to determine the tangential component of moment
change, Walton assumes that a given collision is eitherslid-
ing or rolling throughout the contact. In the first case~slid-
ing!, the tangential componentDPW t is set equal to its fric-
tional limit according to Coulomb’s law: its magnitudeuDPW tu
is a coefficient of frictionm0 times the magnitude of the
normal componentuDPW nu and it is parallel, but oriented in
the opposite direction, to the tangential component of
contact velocity, i.e.,

DPW t52m0uDPW nu tW, ~6!

with tW5vW s /uvW su. m0 characterizes the frictional properties
the surfaces. For angles of incidence close top, i.e., nearly
head-on collisions, Eq.~6! would yield values ofb larger
than 1 @8# and thus a net increase of energy. This is w
whenever for a given collision the sliding assumption yie
a b value greater thanb0 , an a priori unknown positive
constant smaller than 1,rolling is effective. This condition
defines a critical angle of incidenceg0 above which Eq.~6!
is no longer valid. In this case, and in the absence of
equate theoretical predictions,b is set equal to this limiting
value b0 . Along with e and m0 , b0 becomes the third un
known collision property we wish to determine from o
experiment. It characterizes the restitution, in the tangen
motion, of collisions during which rolling in the sense give
in @24# occurs. The equations relating the precollisional a
postcollisional kinematics of the spheres boil down to@8,4#

b5H 212m0S 11
1

K D ~11e!
vn

vs
for g<g0 ~sliding!

b0 for g>g0 ~rolling!,
~7!

where K54I /md2 is a constant equal to 2/5 for homog
neous spheres. Figure 2 illustrates the variation ofb with
2vn /vs given by Eq.~7!. The analysis of a single collision
yields the coefficient of normal restitutione, and only one of
the two other parametersb0 and m0 . Indeed for asliding
contact,b is a function of the angle of approach whilem0 is
now given by the ratio of the tangential to the normal co
ponent, usually referred to as the impulse ratio, of the
pulse DPW . On the other hand, whenrolling prevails b is

FIG. 2. Variation of the rotational coefficient of restitutionb
with vn /vs as predicted by Eq.~7!.
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equal tob0 but the impulse ratio is now varying. Although
is not knowna priori whether a particular collision will be
rolling or sliding, it is still possible, according to Walton’s
model, to determinem0 and b0 by producing a plot ofb
values versus2vn /vs values: According to Eq.~7! b0 is the
maximum value taken byb while the slope of the sliding
regime ism0(111/K)(11e).

III. EXPERIMENTAL METHODS

Experimental measurements of collision properties
spheres depend entirely on the ability to determine as a
rately as possible the kinematics of the two colliding bod
before and after collision. Previous experiments were
signed in which either the available velocity range was v
narrow@27# or the geometry of the collision@22,28#, i.e., the
angle of relative approach, was maintained at zero. Our
is to increase flexibility for both parameters. The experime
tal setup we use is shown in Fig. 3 and is essentially
same as presented in Ref.@37#. It consists of two main units:
the ‘‘collision unit’’ is designed to produce collisions of tw
spheres of arbitrary diameters with adjustable collision
ometry: two steel tubes are mounted on microposition
slides; one of them is allowed to move horizontally and t
other vertically, thus allowing for changes of the relati
incidence of the two spheres. One sphere is inserted in e
tube and held at the end of the latter by a void pump.
manual trigger releases the pressurized air supply, thus
pelling the two spheres. After emergence from the tubes
spheres follow a ballistic trajectory before and after collisio
The initial motion takes place in the vertical plane containi
the axes of the tubes. The ‘‘recording unit’’ is a Ektap
1000 High-Speed Video System consisting of the cam
itself whose focal plane is parallel to the above precollisio
plane, an image processing unit, a video monitor, and a
age intensifying unit. The collision scene is lightened fro
the front with two 750 W Lowell DP lights positionned sym
metrically on both sides of the camera. Collisions are
corded on a video tape at a rate of 1000 images per sec
A varying number of the resulting gray level images, d
pending on the velocities and sizes of the spheres, are s
and downloaded on a Unix platform for processing. In ord
to keep the processing time within reasonable limits, t
number is usually of the order of 8 to 12 images~but maybe
as low as 2 for high velocities! with approximately as many

FIG. 3. Experimental setup.
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5720 56LABOUS, ROSATO, AND DAVE
images before as after collision. Figure 4 shows a seque
of such images. In this particular example images from F
4~a! are taken before collision and those from Fig. 4~b! after
collision. The collision takes place within the time interv
occurring between the snapshots shown at the bottom of
4~a! and the top of Fig. 4~b!. Edge detection and clusterin
techniques@31–34# have been implemented to determine t
trajectory of the spheres. Once the positions of the center
the spheres have been determined, we perform a secon
gree polynomial fit of their respective trajectories, before a
after the collision independantly. These fits are used to
the ‘‘collision time,’’ i.e., the time when the two trajectorie
intersect. The velocity components of each sphere befor
after the collision are then computed by differentiating t
best fits at the ‘‘collision time.’’ The individual spins of th

FIG. 4. Sequence of images. Time increases from top to bott
~a! before collision;~b! after collision.
ce
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falling spheres are determined by following the motio
about the sphere centers, of black dots imprinted on th
surfaces as shown in Fig. 2. The detection of these mar
in the gray level image is performed through a cluster
algorithm capable of fitting ellipses@35#. Once the corre-
spondence between markers from one image to the ne
known, the position of the markers is shifted to a referen
frame connected to the center of the sphere so that only
rotational motion of the markers subsists. The rotation vec
from one frame to the next may then be determined b
least squares method as shown in preliminary stud
@36,37#. We assume that this rotation does not vary sign
cantly during the recording so that an average rotation ve
is computed before and after collision for each sphere. A
collision, the velocity components of the spheres perpend
lar to the focal plane are then determined from conserva
of angular momentum. The ability of this experiment to pr
vide results accurate enough is limited by the resolution
the camera, which is of 192 by 239 pixels. This is w
before extracting the features of the images, i.e., the sp
and marker boundaries, asubpixelexpansion@33# of the im-
age is performed, which is part of the above mention
‘‘edge detection technique.’’ This amounts to inserting inte
polation points of the intensity of the gray level image
therefore refining the apparent resolution of the camera.
final images have dimensions 4 times larger than the cam
resolution, i.e., 768 by 960. Figure 5 shows a gray le
image and the detected edge points in the subpixel expan
of this image. The sphere and marker centers are denote
stars. We verify that this expansion technique actually i
proves the accuracy. Assuming that the accuracy of the
sition of a sphere center is ofs subpixel units, we may esti
mate the error made on the measurement of the compo
of relative velocityvW in a given directionj as

Dvj5
sd

nsdtAN
, ~8!

where dt is the average time between two consecut
frames,ns is the number of subpixels per diameter, and t
factorAN ~N is the average number of frames before or af
collision! is included in a statistical sense to account for t
decrease of the standard deviation of our measurements
the increasing number of frames used for a fit. In a serie
test collision experiments with 25.4 mm nylon spheres,
measured theDvj from the difference in total momentum o
the two spheres, before and after the collision in both dir
tions. If v1j and v2j are the velocity components of tw
colliding spheres in either thex or y direction before colli-
sion with a prime after collision, we computedDvj as

Dvj5u 1
2 (v1j8 1v2j8 2v1j2v2j)u. Using Eq. ~8! where s is

now considered as a parameter, we finds5160.5. We con-
servatively conclude that the subpixel expansion techni
guarantees an effective accuracy of 2 subpixels or ha
pixel of the initial image. In the conditions of the test expe
ments, this corresponds to about a 4% uncertainty for m
surements of velocities of the order of 1 m s21.

:
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56 5721MEASUREMENTS OF COLLISIONAL PROPERTIES OF . . .
IV. RESULTS AND DISCUSSION

In order to extract collisional properties at moderate
locities (2 m s21), we perform a series of experiments wi
2.54 cm nylon spheres with a constant release pressur
that the velocity of the spheres at emergence from the tu
is approximately constant. The direction of approach of
spheres is varied by moving the tubes on their respec
slides. Figure 6 shows the coefficient of tangential restitut
b versus the cotangent of the angle of incidence,2vn /vs .
On this plot we observe the qualitative behavior predicted
Walton’s model: for low values of2vn /vs , b first increases
linearly until it reaches a maximum positive valu
b050.560.1. The average coefficient of normal restituti

FIG. 5. Gray level image~top! and correspondingedgeimage
obtained after processing. The circles are edge points and the
are the centers of the detected clusters~sphere or marker boundary!.
Graduations indicate pixel units in the top image and subpixel u
in the bottom image.
-

so
es
e
e
n

y

is found to be over all these collisionse50.9760.07. From
the slope of the linear part we can extractm050.17560.1.
Due to the discrete nature of the video images, the rela
error obtained on e increases with decreasing velocity: in
for vn.1 m s21 we measuree50.9760.03. The overall un-
certainty found one may therefore be interpreted as the s
nature of the velocity dependence of the coefficient of re
tution, consistently with other measurements presen
below. Interestingly, we also note that the only two oth
measurements ofb0 we found in the literature@27# were
very close to the value just obtained: 0.43 for soda lime gl
spheres and 0.44 for cellulose acetate spheres. We obs
in spite of the increasing uncertainty for large values
2vn /vs , a tendency ofb to decrease from its maximum
valueb0 as predicted by Mawet al. @23,24#.

In another series of experiments we now investigate
mass and velocity dependences of the coefficient of res
tion e. In this case the tubes are kept at the same heigh
that at high velocities the angle of incidenceg of the spheres
will be close top. The pressure is varied to obtain differe
impact velocity magnitudes. The experiment is performed
nylon spheres with diameters 25.4, 12.7, and 6.35 mm.
sults are shown in Fig. 7. Some error bars are shown tha

ars

ts

FIG. 6. Coefficient of tangential restitutionb vs the cotangent of
the angle of incidence.

FIG. 7. Coefficient of restitution vs normal impact velocity fo
nylon spheres for different diameters on a log-log scale. The di
eter of the spheres is shown in the figure. VM denotes the viscoe
tic model. PM denotes plastic model.
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estimated from the change of total momentum as explai
earlier, according to

De

e
.2

Dvn

vn
.

It can be observed that the general trend is a decrease o
coefficient of restitution from values close to 1 as the vel
ity increases. On the other hand, although the results ap
quite scattered, there is an aggregation of points accordin
size, indicating larger values ofe, i.e., less dissipation, fo
larger spheres at fixed velocity. This result is very encour
ing and allows us to compare with existing theoretical mo
els of dissipation during collisions. At relatively low speed
a few meters per second, as used here, energy dissip
appears due to either viscoelasticity of the materials or p
tic deformation if, in some region close to the contact s
face, the local stress exceeds a typical yield stress or e
fracture. It is very likely that in real collisions both viscoela
tic and plastic behaviors will come into play and that v
coelastic effects will prevail for small deformations, i.e
small impact velocities. Both behaviors have been mode
theoretically: Kuwabaraet al. @22# proposed a model of vis
coelastic effects based on Hertz’s theory@26#. It was com-
pared with experimental measurements made through c
sions of two pendula and showed good agreement
materials with the highest restitution or for low impact v
locities, typically below 1 m s21. Johnson@21# proposed a
model of plastic dissipation and obtained, in the large vel
ity limit, an asymptotic behavior in which the coefficient o
restitution does not depend on the size of the object
decreases as the power21/4 of the velocity at high veloci-
ties. This prediction as been verified experimentally in
case of a sphere impinging a flat plate@28#. We compare our
measurements ofe with both predictions. In the viscoelasti
model, the forceP acting between two grains is the sum
an elastic interaction given by Hertz’s theory~see Appendix
A! and of a viscoelastic force describing the internal fricti
of the material. The ‘‘frictional pressure’’ is assumed to
proportional to the rate of displacement~i.e., spring and
dashpot in parallel!:

~9!

whereE5Y/@3(12n2)# ~Y is modulus of elasticity andn
Poisson’s ratio! and h is a phenomenological constant re
dering the internal friction of the material. The time evol
tion of the interparticle ‘‘penetration’’d, i.e., the distance o
relative approach of the sphere centers during the collis
@d5(rW12rW222RnW )•nW #, therefore obeys the following dif
ferential equation:

mredd̈5P, ~10!

wheremred is the reduced mass of the two spheres, as in S
II. While the value ofE is imposed by mechanical propertie
of the material~Y andn!, we have no information on whath
values should be, it may therefore be considered as a fit
d
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parameter. Equations~9! and~10! were shown in Ref.@38# to
yield, in the low dissipation limit, a coefficient of restitutio
e obeying approximately

12e}
hr2/5

E23/5R
Vi

1/5, ~11!

whereVi is the impact velocity,R5d/2 the sphere radius
The size dependence in this model is therefore very stro
We solve this equation numerically over the time interv
whered.0, i.e., when the spheres are in contact, to comp
the coefficient of restitutione. h was chosen so as to gross
center three curves obtained from Eq.~10! at a location sat-
isfactory to the eye. We used the following values ofY and
n : Y.3.53108 N m22, n.0.3, and h.190 kg s21 m21.
The mass density for nylon isr.1.143103 kg m23. The
lines labeled ‘‘VM’’ in Fig. 7 are the results thus obtaine
from Eq. ~10! for the three diameters employed: this com
parison tells us that the size dependence (12e}1/R) pre-
dicted by Eq.~10! appears to be overestimated~a variation
according to 12e}1/R1/2 would be more compatible!; the
rate of decrease ofe with velocity is, however, qualitatively
compatible with our measurements. As mentioned ear
Kuwabara and Kono found that their model was adequate
velocities close to or smaller than 1 m s21. With our appara-
tus probing such a low velocity range becomes somew
awkward and the discrepancy of our data with the viscoe
tic model may well be due to the fact that we used velocit
above its range of validity.

For the smallest spheres and velocities larger than ab
25 m s21, the experimental data clearly plummet below t
VM prediction, possibly indicating the occurrence of a d
ferent dissipation mechanism. In this velocity range we
not have any data for the larger sizes. However, this de
tion incites us to compare our data with a model for plas
deformation since we expect that plasticity has to come i
play. In order to extend Johnson’s prediction to intermedi
values ofVi , we follow Ning and Thornton@39#. In their
model, as long as no plastic deformation occurs, the con
force is given by Hertz’s theory, i.e.,

P~d!5Ed2S d

dD 1/2

.

If plastic deformation occurs the pressure distribution
Hertzian across the contact surface, which is a disk of rad
a such that 2a25Rd, with a cutoff at a specified value o
yield stresssy . In other words, when the maximum elast
stress experienced by the spheres during an elastic impa
given by Hertz reachessy , a central plastic disk develop
inside the contact patch, where the pressure saturates a
cutoff stresssy . In the remaining part of the contact zon
the pressure profile is assumed to follow Hertz’s theory. T
pressure increases from zero at the boundary of the con
patch tosy at the boundary of the inner plastic disk. Th
resulting force-displacement relationship after yield has b
reached becomes linear@see Eq.~12! below#. For details on
the exact signification ofsy see, for example, Ref.@21#. We
did not take into account any variation of the contact cur
ture, as was done in Ref.@39#, in this region during the
elastic-plastic loading but instead kept it constant equa
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the initial curvature. A calculation similar to that of Ref.@39#
gives the repulsive force between the two spheres du
loading:

Ploading~d!5H EdS d

dD 1/2

d for d<dy

1

2
psyR~d2dy!1EdS dy

d D 1/2

dy

~12!

for dy<d<d*

wheredy ~see Appendix B! is the penetration for which the
maximum pressure first reachessy andd* is the maximum
penetration, corresponding to the end of loading. Unload
is done elastically with a larger contact curvatureR8 so that
the elastic force comes to zero after an elastic displacem
(d* 2d0) smaller thand* , that achieved during loading:

Punloading~d!5
21/2E

R8
@R8 ~d2d0!#3/2 for d0<d<d* .

~13!

Both the new curvature and the ‘‘permanent indentation
d0 , stem directly from the continuity of the maximum forc
P* and of the radius of the contact area at the end of
loading phase, i.e.,

Ploading~d* !5Punloading~d* !,
~14!

R8 ~d* 2d0!5Rd* 52a* 2.

A discontinuity of the curvature thus arises that may be
garded as a discontinuity of the average curvature betw
the loading and unloading phases. The force-displacem
curve P(d) is shown in Fig. 8. Yield first occurs when th
stress as predicted by Hertz’s theory at the center of
contact patch reachessy . This happens if the initial impac
velocity is larger than the ‘‘yield velocity’’VY given by~see
Appendix B!

VY5
1

9A10
S p4sy

5

rE4 D 1/2

. ~15!

The relative approach of the sphere centers is t
d5dy5(1/18)p2R(sy /E)2. For Vi<VY , no dissipation oc-
curs, i.e.,e51. For Vi>VY , we compute the coefficient o

FIG. 8. Force displacement curve for the elastic-plastic mo
given by Eqs.~12! and ~13!.
g
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restitution by comparison between the work done by the
pulsive forceP during the loading and unloading phase
The work done until the instant of maximal compression

Wi5
1

2
mredVi

25E
0

d*
Pdd. ~16!

During rebound, the work done by the elastic force is

Wr5
1

2
mredVr

25
P* 2

5Ea*
. ~17!

From Eqs.~16! and~17!, an exact solution may be found fo
the coefficient of restitutione5(Wr /Wi)

1/2. This expression
yields an asymptotic limit forVi@VY in agreement with
Johnson’s:

e.1.18S Vi

VY
D 2 1/4

. ~18!

The solution is plotted on Fig. 7 with the label ‘‘PM’’ and
gives a very good agreement for the smallest spheres, sh
ing the existence of a crossover region between viscoela
and plastic behaviors for velocities around 10 m s21. We
used sy.4.03107 N/m2, for which the yield velocity is
VY.9 m s21. This plastic model defines a ‘‘universa
curve’’ with no size dependence. More data for the larg
sizes are needed, however, to confirm the predicted sca
of e.

V. CONCLUSION

An experimental apparatus was designed to perform m
surements of sphere collision properties: these prope
characterize in a quantitative way the impact of two granu
and therefore can be used to check the relevance of a g
force scheme or collision operator used in computer simu
tions or theoretical studies for a given material. This kind
measurement is of crucial importance to physicists dea
with modeling of rapid flows of granular materials. The
properties are extracted by using a collision operator as
previously done in@23,27#. In this model the possibility of
retrieving part of the elastic energy stored in the early m
ments of a collision where sticking is involved, responsib
for the reversal of the relative surface velocity, is measu
by the coefficientb0 , which was found to be very close t
previous values obtained for other materials@27#. With this
experimental setup we were able to provide results on
size and mass dependence of the coefficient of restitution
the collision of spheres in free flight and to test the relev
dissipation hypotheses. It appears first that there is a rang
velocities in which the coefficient of restitution decreases
the size of the objects decreases. In this range we comp
our data with a model of viscoelastic dissipation@22# and
showed that the size dependence in this model was over
mated but that the velocity dependence (12e}Vi

0.2) gave a
good order of magnitude of the rate of decrease ofe with Vi .
As the velocity increased we showed that the viscoela
assumption was no longer valid and that the stronger di
pation regime~smaller e! was very well described by a
model of plastic deformation inspired from@21,39#. Unfor-

l
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tunately we could not check the size independence predi
by this model due to limitations of the experimental setu
Finally our results show that both models bear some
evance to the dissipation processes involved according to
velocity range used and that the yield velocityVY given by
the plastic model is a good indicator of the crossover
tween the two dissipation regimes. The observed discrepa
of our data compared with the viscoelastic model may be
to the fact that the velocity range we can probe is above
range of validity of the model~in which a linear relationship
is assumed between ‘‘frictional pressure’’ and rate of d
placement! for this material. This experimental devic
proved to be a suitable apparatus to give quantitative in
mation concerning the collision of inelastic frictional spher
in relevance to the physics of granular media.
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APPENDIX A: COMPRESSION OF TWO ELASTIC
SPHERES „HERTZ …

We briefly recall results established by Hertz in 1890~see,
for example,@21# or @26#!, which predict the deformation o
two elastic spheres pressed together by a forcePW 5PuW z
where uW z is a unit vector parallel to the line joining the
centers. The results where established for spheres of arbi
radii R1 andR2 , Young’s moduliY1 andY2 , and Poisson’s
ratios n1 and n2 . The two spheres are in contact across
circular surface of radiusa(P). From symmetry arguments
the only nonzero stress component is that parallel to the
rection of the applied force:

szz~r !5
3P

2pa3 ~a22r 2!1/2, ~A1!

wherer is the radial coordinate measured from the cente
the contact surface. The radius of the contact area is rel
to the distance of relative approachd through
S

J.

e

J.
ed
.
l-
he

-
cy
e
e

-

r-
s

e

-

ry

a

i-

f
ed

R̃d5a2.

The forceP is

P5E
0

a

2prs~r !dr5
4Ẽ

R̃
a354ẼR̃2S d

R̃
D 3/2

, ~A2!

where

1

Ẽ
5

3~12n1
2!

Y1

1
3~12n2

2!

Y2

and

1

R̃
5

1

R1

1
1

R2

.

APPENDIX B: COMPLEMENTS ON SOME RESULTS
OF SECTION IV

In the case of identical spheres~same size and material!,
the elastic force given in Eq.~A2! reduces to

P5Ed2S d

dD 3/2

. ~B1!

Plastic deformation first occurs whenszz(r 50)5sy . Using
Eqs. ~B1! and ~A1!, this gives a relationship between th
penetrationdy at initial yield andsy :

dy5
p2

18 S sy

E D 2

R. ~B2!

The yield velocity is obtained from a balance between
initial kinetic energy and the work done by the elastic for
during loading up to the onset of yield:

1

2
mredVY

25E
0

dy
Pdd. ~B3!

Equations~B3! and ~B2! and the first of Eqs.~12! are com-
bined to find the yield velocity in Eq.~15!.
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